- overbooking limit (virtual capacity). Vector of such state variables or capacities. Finally, used as capacity- or quantity-choice variable in economic models.
- y, y_j, y Allocation variable or protection level for product j; vector of allocations or protection levels. Used in models for finding partitioned or nested allocations. Also the state variable (number of reservations on hand) in overbooking models.
- z_t Notation used in forecasting. Data value of a forecast observed at time t (realization of random variable Z_t).
- \hat{z}_t Notation used in forecasting. Forecast (point estimate) of time-series value at time t (estimate of unrealized value Z_t).
- Z_t Notation used in forecasting. The $t^{ ext{th}}$ random variable in a time series Z_1, Z_2, \ldots
- Z(x), Z(y) Number of customers who show up (number of survivals) from a given number x, y of reservations on hand. Used in overbooking models.
- $\bar{Z}(x)$ Number of customers who cancel from a given number x of reservations on hand; $\bar{Z}(x) = x Z(x)$.

Greek Variables

- λ , λ_j An arrival rate in a deterministic demand model and arrival intensity or arrival probability in a probabilistic-demand model.
- Δ The first-difference operator; if g(x) is a function, then $\Delta g(x) = g(x) g(x-1)$.
- $\epsilon(p)$, $\epsilon_{ij}(\mathbf{p})$ The elasticity of demand; the cross-price elasticity of demand for product i with respect to the price of product j.
- μ The mean of a random variable.
- Ω , Ω_p , Ω_d A constraint set; the contraint set of prices p and demand rates d.
- $\pi_i, \pi_i(x), \pi$ A bid price value or function—or a dual price from a math program.
- σ The variance of a random variable.
- θ A generic parameter of a distribution or a scaling parameter.
- $\Phi(z)$ The standard normal distribution (i.e., $\Phi(z) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z/2} dz$).
- $\phi(z)$ The standard normal density (i.e., $\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z}{2}}$).
- $\psi_X(t)$ The moment-generating function of a random variable X.
- ω An elementary outcome in a probability space (e.g., a random variable is $X(\omega)$).

Miscellaneous Symbols and Notation

- \Re , \Re_+ , \Re^n , \Re^n_+ The set of real numbers $(+\infty, +\infty)$; the set of nonnegative real numbers $[0, +\infty)$; the *n*-dimensional real plane and the *n*-dimensional positive orthant.
- Z The set of integers, $\{...,-2,-1,0,1,2,...\}$.
- $\mathbf{x}^{\mathsf{T}}, \mathbf{A}^{\mathsf{T}}$ The transpose of a vector x or a matrix A.
- x^+ , $(a-b)^+$ The positive part of x equal to $\max\{0, x\}$; the positive part of the quantity (a-b).
- x^- , $(a-b)^-$ The negative part of x equal to $\max\{0, -x\}$; the negative part of the quantity (a-b).