overbooking limit (virtual capacity). Vector of such state variables or capacities. Finally, used as capacity- or quantity-choice variable in economic models.
y, y_{j}, \mathbf{y} Allocation variable or protection level for product j; vector of allocations or protection levels. Used in models for finding partitioned or nested allocations. Also the state variable (number of reservations on hand) in overbooking models.
$z_{\boldsymbol{t}}$ Notation used in forecasting. Data value of a forecast observed at time \boldsymbol{t} (realization of random variable Z_{t}).
\hat{z}_{t} Notation used in forecasting. Forecast (point estimate) of time-series value at time \boldsymbol{t} (estimate of unrealized value Z_{t}).
Z_{t} Notation used in forecasting. The $t^{\text {th }}$ random variable in a time series Z_{1}, Z_{2}, \ldots.
$Z(x), Z(y)$ Number of customers who show up (number of survivals) from a given number x, y of reservations on hand. Used in overbooking models.
$\bar{Z}(x)$ Number of customers who cancel from a given number x of reservations on hand; $\bar{Z}(x)=x-Z(x)$.

Greek Variables

λ, λ_{j} An arrival rate in a deterministic demand model and arrival intensity or arrival probability in a probabilistic-demand model.
Δ The first-difference operator; if $g(x)$ is a function, then $\Delta g(x)=g(x)-g(x-1)$. $\epsilon(p), \epsilon_{i j}(\mathbf{p})$ The elasticity of demand; the cross-price elasticity of demand for product i with respect to the price of product j.
μ The mean of a random variable.
$\Omega, \Omega_{p}, \Omega_{d}$ A constraint set; the contraint set of prices p and demand rates d.
$\pi_{i}, \pi_{i}(x), \pi$ A bid price value or function-or a dual price from a math program.
σ The variance of a random variable.
θ A generic parameter of a distribution or a scaling parameter.
$\Phi(z)$ The standard normal distribution (i.e., $\Phi(z)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-z / 2} d z$).
$\phi(z)$ The standard normal density (i.e., $\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z}{2}}$).
$\psi_{X}(t)$ The moment-generating function of a random variable X.
ω An elementary outcome in a probability space (e.g., a random variable is $X(\omega)$).

Miscellaneous Symbols and Notation

$\Re, \Re_{+}, \Re^{n}, \Re_{+}^{n}$ The set of real numbers $(+\infty,+\infty)$; the set of nonnegative real numbers $[0,+\infty)$; the n-dimensional real plane and the n-dimensional positive orthant.
\mathcal{Z} The set of integers, $\{\ldots,-2,-1,0,1,2, \ldots\}$.
$\mathbf{x}^{\boldsymbol{\top}}, \mathbf{A}^{\boldsymbol{\top}}$ The transpose of a vector x or a matrix \mathbf{A}.
$x^{+},(a-b)^{+}$The positive part of x equal to $\max \{0, x\}$; the positive part of the quantity $(a-b)$.
$x^{-},(a-b)^{-}$The negative part of x equal to $\max \{0,-x\}$; the negative part of the quantity $(a-b)$.

